Slexy.org is shutting down and stopped accepting new Pastes on May 4th, 2021.
Existing Pastes will stop being available on or after May 10th, 2021.
Author: Not specified Language: text
Description: Not specified Timestamp: 2015-10-27 07:21:47 +0000
View raw paste Child paste by: BNS gold Reply
  1. FindRoot[{0 == 0.4*y - x/E^(2*y), 0 == y/E^(3*x) - 0.6*x}, {x,
  2.   1}, {y, 1}]
  3. T = 10;
  4. Show[Table[
  5.   sol = NDSolve[{Derivative[1][x][t] == 0.4*y[t] - x[t]/E^(2*y[t]),
  6.      x[0] == 0.255 + 0.005*Cos[s],
  7.             Derivative[1][y][t] == y[t]/E^(3*x[t]) - 0.6*x[t],
  8.      y[0] == 0.33 + 0.005*Sin[s]}, {x, y}, {t, 0, T}];
  9.       ParametricPlot[Evaluate[{x[t], y[t]} /. sol], {t, 0, T},
  10.    PlotRange -> All], {s, 0, 2*Pi, 0.2}]]
  11.  
  12.  
  13.  
  14. T = 2;
  15. Show[Table[
  16.   sol = NDSolve[{Derivative[1][x][t] == 0.4*y[t] - x[t]/E^(2*y[t]),
  17.      x[0] == 0 + 0.005*Cos[s],
  18.             Derivative[1][y][t] == y[t]/E^(3*x[t]) - 0.6*x[t],
  19.      y[0] == 0 + 0.005*Sin[s]}, {x, y}, {t, 0, T}];
  20.       ParametricPlot[Evaluate[{x[t], y[t]} /. sol], {t, 0, T},
  21.    PlotRange -> All], {s, 0, 2*Pi, 0.2}]]
View raw paste Child paste by: BNS gold Reply